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Abstract
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studying, or ‘solving’, said theory through the lens of a solution concept (e.g. Nash equilibrium).
In this paper, we argue that theoretical predictions are more suitably derived from an explicit set
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to various well-known economic frameworks.
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1 Introduction

A key objective of economic theory is to generate empirically relevant predictions; that is,

plausible predictions concerning actual, real-life behavior. To this end, the literature conventionally

proceeds by studying, or ‘solving’, a given theory through the lens of a solution concept such as

Nash equilibrium.1 More precisely, solution concepts are used to restrict the set of principally

possible outcomes to a corresponding, concept-implied subset. In effect, contemporary convention

may be summarily described as follows:

A1. Propose an economic theory

A2. Specify a solution concept (e.g. Nash equilibrium)

A3. Restrict pool of strategy profiles to concept-implied set of ‘solutions’

A4. Predict outcome by selecting among set of concept-implied solutions

Evidently, a key premise that underlies Procedure A is that a strategy profile represents a

suitable candidate for the ultimately observed outcome (if and) only if it is contained in the set of

solutions derived in step A3. For example, a particularly popular approach to derive such candidates

is to discard any profile that is not Nash.

The canonical choice of Nash equilibrium in step A2 is typically motivated by the fact that

any non-Nash profile is ‘self-destabilizing’ in that it must feature at least one player who would

benefit from deviating.2 Thus, to the extent that humans are rational, one might naturally expect

real-life behavior to form such equilibrium. However, Bernheim (1984) and Pearce (1984) famously

show that rationality — even if it is commonly known — is in and of itself insufficient to imply

that a game’s outcome must be Nash; suggesting that Nash equilibrium may be too restrictive a

solution concept. Conversely, there exists an extensive literature on equilibrium ‘refinements’ which

argues that Nash equilibrium is in fact not restrictive enough (see Harsanyi and Selten, 1988). This

seeming contradiction can be reconciled by distinguishing between two types of errors.

? Type 1 (too restrictive). Exclusion of a ‘plausible’ outcome from set of solutions

? Type 2 (not restrictive enough). Inclusion of an ‘implausible’ outcome in set of solutions

Since type-I and type-2 errors are not mutually exclusive, it is easy to see that Nash equilibrium

1See Hu and Sobel (2022), Altinoglu and Stiglitz (2023), Budish and Bhave (2023), or Liu and Sun (2023).
2“Clearly, [...] the solution of a noncooperative game has to be a Nash equilibrium since every other strategy

combination is self-destabilizing” (van Damme, 1991)
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(or any other solution concept) can be both too restrictive and not restrictive enough. Indeed, this

is not only true across games, but even within a particular game.

Following the above logic, a tempting way to operationalize Procedure A would be to select

a solution concept so as to minimize some sort of weighted sum of type-1 and type-2 of errors.

Such an approach is problematic for at least two reasons. First, what constitutes a ‘plausible’

prediction is precisely what a theorist wishes to derive from their theory and, as such, should not be

invoked primitively.3 Second, and this is the starting point of the present paper, it is well-known (in

epistemic game theory) that choosing a solution concept effectively amounts to making assumptions

about the modeled players’ rationality, their knowledge, and/or the assumptions that they might

make when determining their strategy (see Figure 2). For example, Nash equilibrium reflects

an epistemic state, whereby each agent knows their own payoffs, acts rationally, and correctly

anticipates every other player’s actual/final choice. Thus, Nash equilibrium should be invoked if

(and only if) there is reason to believe that all real-world counterparts of a particular model’s

theoretical agents do, in fact, fulfill the listed requirements.4

Following the above logic, our primary contribution lies in the translation of existing insights

from epistemic game theory into an operational paradigm (akin to Procedure A) for predicting the

plausible outcomes of a particular economic theory. To this end, we first collect various results from

the epistemic literature in the form of a mapping from epistemic states into well-known solution

concepts (Section 2). In turn, we illustrate the relative merits of the epistemic approach by applying

it to a series of well-known economic models (Section 3). Finally, in Section 4, we take stock and

distill the main insights from our analysis into the following two alternatives to Procedure A,

B1/C1. Propose an economic theory

B2/C2. Specify a suitable epistemic state capturing the specific strategic environment at hand

B3/C3. Derive state-implied set of potential outcomes, either via an existing solution concept (B)
or from the epistemic state directly (C)

3That is, a theorist should not be able to (cherry-)pick a set of ‘plausible’ outcomes and then, without any
constraints or further justification, select a solution concept so as to legitimize and/or obfuscate said choice.

4It is tempting, for two reasons, to reject the ‘only if’ portion of this argument. First, while jointly sufficient, the
listed conditions, including the ability to correctly anticipate others’ choices, are not individually necessary. However,
this is only because such necessary conditions do not exist. Indeed, note that players can always “blunder into a
Nash equilibrium by accident” (see Aumann and Brandenburger, 1995), a fact that is surely insufficient for a theorist
to restrict their attention to Nash outcomes for purposes of prediction. Second, Aumann and Brandenburger (1995)
provide an epistemic characterization of Nash equilibrium in which choices are mutually unknown (see Section 2).
However, even if said conditions were fulfilled, invoking Nash equilibrium for purposes of prediction would still be
inappropriate, namely because they only induce equilibrium in beliefs, not actual play.
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When comparing Procedures B and C to the canonical Procedure A, first note that, to the

extent that any solution concept can be derived from an underlying epistemic state5, Procedure B

nests Procedure A. For example, the ‘Nash specification’ of Procedure A can easily be mimicked by

way of specifying, in step B2, the aforementioned epistemic state that underpins Nash equilibrium.

Figure 1. Three procedures to derive predictions from economic theory

Theory
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Solutions
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concept
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Notes: Figure 1 contrasts the traditional solution-concept-based approach (i.e Procedure A) with the epistemic
approach advocated for herein (Procedures B and C). Here, ι is used to denote the identity map, the lightning
symbol (E) and blue represent assumptions, and green denotes results. The main insight of Figure 1 is then that the
derivation of plausible predictions neither requires nor benefits necessarily from the use of solution concepts. This is
because, for purposes of deriving plausible predictions, specifying an epistemic state is not only sufficient, but it is
also more versatile and more transparent.

While interesting, the fact that Procedures B nests Procedure A is relatively inconsequential.

Instead, the primary virtues of the epistemic approach lie in its transparency and its versatility.

In terms of transparency, the primary benefit of the epistemic approach is that it requires an

explicit disclosure of the epistemic assumptions that are required to yield the proclaimed predic-

tions. For example, when invoking Nash equilibrium, a theorist should disclose that, and ideally

why, players are assumed to correctly anticipate each other’s choices. In turn, such disclosures

allow the reader to interrogate more transparently the plausibility of the presented argument. In

particular, if the asserted epistemic state seems contextually inappropriate, the reader can discern

more transparently the practical limitations of the corresponding predictions. Conversely, if the

asserted epistemic state is uncontroversial, the proclaimed predictions’ credibility is strengthened.6

Beyond transparency, the main benefit of the epistemic approach lies in its versatility. This

addresses an important practical limitation of existing solution concepts, all of which reflect epis-

5Even if this were not true, it is entirely unclear why or under which circumstances a solution concept that fails
this very basic requirement would ever be of practical relevance or interest.

6For example, in a game of Prisoner’s dilemma (see G2 in Appendix A) in which neither player knows anything
about the other player, appealing to Nash equilibrium is not only epistemically inappropriate, but it is also entirely
unnecessary. Indeed, so long as each player acts rationally, we can eliminate a single round of strictly dominated
strategies, which is sufficient to imply defection by both players.
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temic states that are perfectly symmetric. For example, to be able to invoke Nash equilibrium,

each player must correctly anticipate every other player’s choice. Similarly, to invoke rationalizabil-

ity, rationality must be commonly assumed. But what if a certain player, or a certain fraction of

players, is known to play irrationally? For example, a theorist who wishes to explain the actually

observed behavior in real-world Keynesian beauty contests inevitably must account for the fact

that some players play irrationally, whereas others seemingly (and falsely) assume that rationality

is commonly assumed (see Thaler, 2015).7 It is for this reason, to account for such asymmetries,

that we introduce Procedure C as a complement to Procedure B.

To illustrate its merits in more detail, Section 3 applies the epistemic approach to various

well-known economic frameworks: The Diamond-Dybvig model of bank runs (1983), Calvo’s inde-

terminate sovereign debt auction (1988), Akerlof’s market for lemons (1970), and various market

economies (Arrow and Debreu, 1954; Bertrand, 1883; Cournot, 1838). Specifically, for each applica-

tion, we first specify a suitable epistemic state and then derive our empirical predictions therefrom.

Whenever applicable, following the logic of Procedure B, we reference the relevant solution concept.

Especially in the context of our Akerlof-inspired analysis of the market for a used car, however,

departing from existing solution concepts and allowing for epistemic asymmetries (i.e. Procedure

C) yields additional insights.

Related literature. Broadly, the present paper lies at the intersection of two vast theoretical

literatures: (i) the applied literature that leverages solution concepts for purposes of prediction

(i.e. game theory, micro- and macroeconomic theory); and (ii) the epistemic literature that studies

solution concepts’ decision-theoretic roots.8 Since Section 2 is devoted to collecting insights from

the latter, an additional review of this literature is omitted here. Instead, a comment regarding our

paper’s distinctive objective is in order: Unlike the epistemic literature, we do not seek to establish

the epistemic underpinnings of an existing solution concept.9 In particular, this is because such

characterizations seek to answer whether a particular solution concept can (i.e. in general/across

all finite games) be motivated by way of some underlying epistemic state. However, the fact that a

7In a Keynesian beauty contest, players are asked to pick a number in the closed interval [0, 100] with the objective
of matching two thirds of the mean response.

8The list of papers which introduce a novel solution concept is too long to present here, so we limit ourselves to
the following, particularly well-known subset: Nash (1950), Harsanyi (1973), Aumann (1974), Selten (1975), Myerson
(1978), Kreps and Wilson (1982), van Damme (1984), Gilboa and Matsui (1991), Carlsson and van Damme (1993).

9See Bernheim (1984), Pearce (1984), Aumann (1987), Blume, Brandenburger, and Dekel (1991b), Aumann and
Brandenburger (1995), Brandenburger, Friedenberg, and Keisler (2008).
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solution concept can be motivated by way of some underlying epistemic state does not mean that

said state serves as an empirically suitable description of any arbitrary strategic environment at

hand.10 Thus, rather than fixing a solution concept and examining whether it can be epistemically

characterized across all games, we fix various games and ask which solution concept most suitably

reflects the corresponding strategic environment.

To illustrate the insight that solution concepts should be chosen to accurately reflect the strate-

gic environment at hand, we now briefly review a theoretical argument presented in Hu and Sobel

(2022). For this, suppose two ‘experts’, i ∈ {1, 2}, with utility ui(x) ≡ 1 −maxi∈I{xi} simultane-

ously and independently choose xi ∈ X ≡ {0, 0.1, ..., 0.9, 1} so as to determine which projects in

X a manager (with utility um = maxi∈I{xi}) is permitted to undertake.11 Interestingly, this game

features as many Nash equilibria as it features actions (i.e. eleven, all symmetric), but xi = 0 is

weakly dominant for both experts and, as such, might be perceived as the only equilibrium that is

‘plausible’. Following this logic, the referenced authors write: “the possibility of multiple equilibria

leads us to consider a more restrictive solution concept” (i.e. weak dominance).

With reference to the theory described above, we concur with the authors that weak dominance

represents a more suitable solution concept than Nash equilibrium. Nevertheless, our paper con-

tributes — via Figure 2 — to their analysis in two ways: First, the reason why Nash equilibrium

is contextually inappropriate is not that it generates multiple solutions, which it does, but rather

because its epistemic requirements do not plausibly reflect the strategic setting at hand.12 Second,

the reason why weak dominance is contextually appropriate is not that it generates a unique and

intuitive prediction, which it does, but rather because its epistemic requirements plausibly reflect

the epistemic state at hand. Indeed, in our specification, an immediate elimination of all strategies

other than xi = 0 is warranted so long as we are willing to assume that both experts know their

own payoffs, that they are rational, and that they are cautious (see Appendix B).13

10For example, the fact that Nash equilibrium can be rationalized across the universe of all finite games (namely
via rationality, knowledge of payoffs, and mutual knowledge of others’ choices) does not imply that it does, in fact,
represent a suitable solution concept across all such games. Indeed, in most games, there is no reason to believe that
players correctly anticipate opponents’ actual/final choices.

11The referenced authors’ framework is substantially more general in that players’ utility is only assumed to
satisfy ui = vi(M(x)), where x = (x1, x2, ..., xI), xi ∈ X for each i in the finite set of players I, X ⊂ R is also finite,
M(x) ≡ maxi∈I{x}, and vi : X 7→ R is bijective for each i. Nevertheless, since our formulation satisfies all of the
aforementioned conditions, their results apply.

12Indeed, without further justification, there is no reason to believe that the experts know each other’s actual/final
choice, nor that their beliefs regarding the other’s play are mutually known (see Figure 2).

13Rationality and caution yield a single round of elimination of weakly dominated strategies.
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2 The epistemic approach

In this section, we illustrate our paper’s main motivating observation — that epistemic condi-

tions can be used to narrow down a game’s set of conceivable outcomes — by collecting a number of

key results from the epistemic literature in the form of a flowchart (Figure 2).14 Aside from serving

as a useful tool for future research, Figure 2 also illustrates the implicit epistemic assumptions that

remain hidden when solution concepts are invoked as model primitives (i.e. Procedure A).

Figure 2. A map of epistemic conditions into well-known solution concepts

Start: Payoffs individually known? Players individually rational?

Final choices mutually known?

Choices observ./Revisions poss.? Rev. continuous/costless/myopic?

Complete information?

Common prior (intrinsic)?

Mutual knowledge of rationality?

Common knowledge of rationality?

?

1. Nash equilibrium (actions) 2. Best-response dynamics

Sampling BRD/Rev. games?

Purification/global games?

3. Single elimin. of NBR?

3a. Multiple elimin. of NBR?

Common prior (extrinsic)?

Common knowledge of caution?Common knowledge of beliefs?
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4. IENBR/Rationalizability?
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Notes: Figure 2 maps various sets of epistemic conditions into their corresponding solution concept and, as such,
represents an extension of Table 1 in Brandenburger (1992b). While all of the depicted conditions are sufficient, some,
to keep the flowchart as compact as possible, are not ‘tight’ in that weaker conditions would be sufficient to yield
the same concept (e.g. Nash equilibrium only requires mutual knowledge of the game and rationality). Fields in blue
contain possibly suitable solution concepts that would require further assumptions, whereas the solution concepts
denoted by a star (?) vary based on whether players’ can correlate their random choices.15

To motivate the depicted results within a unified framework, we consider the class of all finite

N -person games Γ such that each game Γ ∈ Γ features a finite set of players IΓ all of whom choose

a possibly mixed strategy σΓ
i in a finite space of pure strategies ΣΓ

i taking as given their utility

function uΓ
i : ΣΓ 7→ R.16 Let us then start by defining as follows,

14Importantly, Figure 2 depicts epistemic conditions that are sufficient to invoke a particular solution concept.
As pointed out by Aumann and Brandenburger (1995) in the context of Nash equilibrium, it makes little sense to
contemplate ‘necessary’ epistemic conditions as players can, even if they don’t know their payoffs and/or are irrational,
always tumble (i.e. by accident) into a profile that just so happens to align with a particular solution concept.

15If correlated play is permitted and the strategy space is finite, SENBR, MENBR, and IENBR are equivalent to
single (SESDS), multiple (MESDS), and iterated elimination of strictly dominated strategies (IESDS) respectively.
This is because a strictly dominated strategy is always a never-best response, but a never-best response is not always,
unless correlated play is permitted, strictly dominated (see Pearce, 1984).

16The results depicted in Figure 2 are based on the assumption that each player’s strategy space is finite and, as
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Solution concept. A solution concept is a function S : Γ 7→ ΣΓ that restricts the set of a game’s

possible outcomes ΣΓ to a concept-implied subset S(Γ) ⊆ ΣΓ for each Γ ∈ Γ.

Solutions. The solutions S of a game Γ ∈ Γ under a solution concept S : Γ 7→ ΣΓ are given by

S = S(Γ).

The primary benefit of our formal treatment above lies in the insight that, in general, a game’s

set of solutions not only depends on the game itself, but also on the employed solution concept.

But then, if the choice of solution concept is so crucial, how should one go about choosing it? For

this, we follow the decision-theoretic literature which emphasizes that solution concepts reflect an

underlying epistemic state.

Epistemic state. A game’s epistemic state E ∈ E consists of players’ individual and collective

knowledge (or assumptions17) “about the game and about each other’s rationality, actions, knowl-

edge, and beliefs” (Aumann and Brandenburger, 1995).18

Throughout the following, we broadly distinguish between three types of epistemic states: (i)

when players’ choices are mutually known; (ii) when choices are mutually observable; and (iii) when

they are neither mutually known nor mutually observable.19 In the last case, we further distinguish

between various levels of knowledge of payoffs, rationality, caution, and beliefs (see Figure 2).

2.1 When choices are mutually known

In our construction of Figure 2, we start with the (seemingly) innocuous assumptions that each

player i ∈ I knows their own action space Σi, their utility function ui, and that all players are

rational in that they choose their actions so as to maximize utility.20 In this context, let us first

consider the special case in which all players’ actual/final choices are mutually known,

Rationality (choices mutually known). If a player i knows all other players’ actual/final

such, may not extend to infinite strategy spaces (see Lipman, 1994). However, the main insight contained in Figure 2
— that varying solution concepts reflect varying epistemic states — does extend to infinite strategy spaces.

17In our construction of Figure 2, we limit our analysis to the canonical notion of ‘knowledge’ as proposed by
Aumann (1976). However, to motivate our use of weak dominance/admissibility in Section 3, Appendix B discusses
the alternate, LPS-based notion of ‘assumption’ due to Brandenburger, Friedenberg, and Keisler (2008).

18Since most epistemic states do not map into a well-known solution concept, our analysis only scratches the
surface of E. As such, the present paper might be viewed as fertile ground for future research. However, as alluded
to in Section 1 and illustrated in Section 3, the power of Procedure C is precisely that it operates independently of
solution concepts.

19A fact is said to be mutual knowledge if all players know said fact.
20To simplify notation, we fix a particular game Γ ∈ Γ and, thus, drop the superscripts.
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choices σ−i, they are said to be rational if and only if their own final choice constitutes a best

response with respect to σ−i, i.e. ui(σi|σ−i) ≥ ui(σ′i|σ−i) for each σ′i ∈ Σi and each σ−i ∈ Σ−i.

Result 1 (Aumann and Brandenburger, 1995). In finite N -person games where actual/final

choices are mutually known, and all players are rational, the resulting play σ must be Nash, i.e.

ui(σi|σ−i) ≥ ui(σ′i|σ−i) for each σ′i ∈ Σi, each i, and each σ ∈ ΣNE .

At this point, two remarks are in order, one in defense of Nash equilibrium and one in opposition

to Nash equilibrium. First, it is tempting to think that the above result only applies to finite games

since Nash equilibrium may not exist in games with infinite strategy spaces.21 However, this is not

true because if all players’ actual/final actions are mutually known and all players are rational as

defined above, then the resulting play, by definition, must be Nash. Thus, the observation that

certain games fail to feature a Nash equilibrium simply reflects the fact that, in some games, it is

impossible for all players to jointly satisfy the above definition of rationality. As such — and this

is our second remark — although appealing from a mathematical perspective, the above result is

economically artificial in that it is difficult to imagine a strategic environment where all players

truly know (i.e. with certainty) everyone else’s actual/final choice when they make their own final

choice.22 To relax this assumption, we now consider the case where choices are mutually unknown.

2.2 When choices are mutually observable

If choices are mutually unknown, the task of selecting an action is complicated by the fact that

utility depends on a player’s beliefs φi : Σ−i 7→ [0, 1]. Let us then define,

Rationality (choices mutually unknown). If player i does not know all other players’ ac-

tual/final choices σ−i, they are said to be rational if and only if their own final choice constitutes

a best response with respect to their beliefs, i.e. E[ui(σi|σ−i)] ≥ E[ui(σ
′
i|σ−i)] for each σ′i ∈ Σi and

some beliefs φi over σ−i.
23

For example, if actions are mutually observable and strategic revisions are possible, a natural

way to proceed is to assume that each player’s (posterior) beliefs coincide with the presently pre-

21For example, suppose two players choose a natural number and whoever chooses a strictly higher number wins,
i.e. ui = 1[σi > σ−i] for both i. Clearly, this game does not feature any Nash equilibria.

22“Nash equilibrium does make sense if one starts by assuming that, for some specified reason, each player knows
which strategies the other players are using. But this assumption appears rather restrictive” (Aumann, 1987).

23While this definition is standard in the epistemic literature, Brandenburger et al. (2008) consider an alternate
definition that includes the avoidance of weakly dominated strategies as part of a player’s rationality.
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vailing strategic state (which supersedes any preexisting priors). In this case, if strategic revisions

are continuous, costless, and myopic, best-response dynamics constitute a contextually appropriate

solution concept.24

Result 2 (Gilboa and Matsui, 1991; Matsui, 1992). In finiteN -person games, if the prevailing

strategic state σ(t) ∈ Σ is mutually observable and strategic revisions are continuously possible,

costless, and myopic (with or without strategic trembles), then the resulting play takes the form of

a best-response dynamic path (BRDP), i.e. σ : T 7→ Σ.25,26

2.3 When choices are neither mutually known nor observable

If choices are neither known nor observable, players must resort to forming beliefs based on

their knowledge of others’ characteristics such as rationality and/or caution. In particular, players

can use such knowledge to restrict the set of possible beliefs to a permissible subset.

Permissible beliefs. A profile of beliefs φ is said to be permissible if and only if it does not

contradict the game’s epistemic state E .

For example, if a player knows that the game being played is mutual knowledge and that all

players are rational, they can infer that no player will play a strictly dominated strategy. Following

this logic, we continue our construction of Figure 2 by assuming that the game itself is common

knowledge.27

Complete information. A game Γ is said to be of complete information if Γ itself (but not the

actual/final choices σ ∈ Σ) is common knowledge.28

24Conversely, if strategic revisions are subject to frictions, alternate concepts such as sampling best-response
dynamics (see Oyama et al., 2015) or revision games (see Kamada and Kandori, 2020) may be more appropriate.

25Gilboa and Matsui (1991) allow for strategic trembles, whereas Matsui (1992) does not.
26Much like Nash equilibrium, the solution concept of best-response dynamics itself naturally extends to infinite

strategy spaces, although, once again, existence is not guaranteed as the best-response correspondence may not be
well-defined across the entire strategy space.

27A fact is said to be common knowledge if all know, all know that all know, and so on ad infinitum (see Aumann,
1976).

28Many games of incomplete information can be transformed into games of complete information through the
suitable use of random variables (and expected utility). For example, if players are unaware of others’ payoffs (see
Harsanyi, 1973) or even their own payoffs (see Carlsson and van Damme, 1993), a corresponding common prior in
conjunction with expected utility is sufficient to permit an interpretation of such environments (i.e. purification and
global games respectively) as ones of complete information: “Such games [incomplete information games] can also
be modeled, more conveniently, as games with complete information involving appropriate random variables (chance
moves), where the players’ ignorance about any aspect of the game situation is represented as ignorance about the
actual values of these random variables.” (Harsanyi, 1973)
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In games of complete information, knowledge about other players, especially their rationality,

can be used to restrict a game’s set of conceivable outcomes.

Knowledge of rationality

As famously shown by Bernheim (1984) and Pearce (1984), rationality is in and of itself is

insufficient to imply Nash equilibrium. Indeed, even in a game of complete information where all

players are individually rational, but no player knows this, an outside observer can at most rule

out a single round of never-best responses.

Result 3. In finiteN -person games of complete information where actual/final choices are mutually

unknown, but all players are rational, no player plays a never-best response (NBR), i.e. σ ∈ ΣNBR1 .

To obtain a ‘tighter’ restriction (beyond a single elimination of NBRs), further epistemic as-

sumptions are required. For example, mutual knowledge of rationality allows for a second round

of elimination, second-order mutual knowledge for a third, and so on.29 In turn, perhaps un-

surprisingly, common knowledge of rationality yields iterated elimination of never-best responses

(IENBR), a solution concept more commonly known as rationalizability.

Result 4 (Bernheim, 1984; Pearce, 1984). In finite N -person games of complete information

where actual/final choices are mutually unknown, but rationality is commonly known, the resulting

play survives iterated elimination of never-best responses, i.e. σ ∈ ΣR ≡ ΣNBR∞ .30

Aside from knowledge of rationality, there exist three further types of knowledge that have been

used to discipline a game’s set of solutions: caution, common priors, and beliefs.

Caution and knowledge thereof

Pearce (1984) proposed that a player might act ‘cautiously’ in that they consider each of their

opponents’ rationalizable strategies with positive probability. In turn, strategies that fail to be a

best response to any such ‘cautious beliefs’ are then ruled out as ‘not cautious’. Moreover, if players’

caution is common knowledge, the two described operations — eliminating all non-rationalizable

strategy profiles and all not-cautious responses thereto — are repeated until the remaining set of

29See Brandenburger, Friedenberg, and Kneeland (2020) for a comparative study of such iterated dominance and
level-k analysis.

30Lipman (1994) shows that this result can be extended to the case of infinite strategy spaces, albeit only if we
allow for “transfinite” (e.g. uncountably infinite) eliminations of never-best responses as part of common knowledge
of rationality.

11



strategy profiles no longer varies.

Result 5 (Pearce, 1984). In finite N -person games of complete information where final choices

are mutually unknown, but rationality and caution are commonly known, the resulting play σ must

be cautiously rationalizable, i.e. σ ∈ ΣCR ⊆ ΣR.31

Common priors

To provide an epistemic justification for correlated play in non-cooperative settings, Aumann

(1987) proposed that agents might coordinate their actions by way of an (extrinsic) state.

Result 6 (Aumann, 1987). In finite N -person games where final choices are mutually unknown,

but rationality is commonly known and players share a common prior over observed play σ : Ω 7→ Σ

(via a common prior over the set of states of the world Ω), the latter forms a correlated equilibrium.32

Importantly, conditional on the state of the world ω, players are assumed to be able to infer

others’ actual/final choices by way of the mapping σ−i : Ω 7→ Σ−i. However, since they do not

know the true state of the world, they proceed by deriving a posterior over σ−i by way of their

(individual) posterior over ω. In effect, in the described setting, a player’s set of permissible beliefs

is given by a singleton (and equal to said player’s posterior distribution over σ−i as implied their

posterior over ω) for any given realization of ω.

In a correlated equilibrium, actually observed behavior must be rationalizable because rational-

ity is common knowledge. Following this logic, one might then naturally wonder what additional

epistemic conditions would be required for actually observed play to be Nash.

Knowledge of beliefs

To develop an intuition for the epistemic requirements of Nash equilibrium when choices are

mutually unknown, we require two lemmas.

Lemma (Aumann and Brandenburger, 1995). In two-person games where final choices are

mutually unknown, mutual knowledge of beliefs, payoffs, and rationality imply that said beliefs

form a (possibly mixed strategy) Nash equilibrium.

31Following the logic from Lipman (1994), we suspect that this result extends to the case of infinite strategy spaces
(so long as there exist strictly positive probability mass/density functions thereon), namely if we allow for transfinite
eliminations of never-best responses and not cautious responses thereto as part of common knowledge.

32Intuitively, the defining element of correlated equilibrium is that players’ actions may correlate. Thus, unlike in
mixed strategy Nash equilibrium, the common prior over σ need not be equal to the product of its marginals {σi}i∈I .
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The above result is intuitive in that player 1 can leverage their knowledge of player 2’s beliefs,

payoffs, and rationality to infer which actions player 2 might choose. More precisely, player 1’s

beliefs φ1 only assign positive probabilities to actions in player 2’s best response set (relative to

φ2). Analogously, player 2’s beliefs φ2 only assign positive probabilities to actions in player 1’s best

response set (relative to φ1). Thus, (φ1, φ2) must form a Nash equilibrium.33

To extend the above result to three or more players, we require that all players agree on a

shared set of mutually independent beliefs,

Lemma (Aumann and Brandenburger, 1995). In finite N -person games where final choices

are mutually unknown, mutual knowledge of independent and collectively congruent beliefs, payoffs,

and rationality imply that said beliefs form a (possibly mixed strategy) Nash equilibrium.34

Indeed, if all players share the same beliefs regarding player i’s play and player i’s payoffs and

rationality are mutually known, then said shared beliefs may only assign a positive probability to

an action (of player i) if said action lies in player i’s best response set (relative to the mutually

known/shared beliefs). But then, if the profile of shared beliefs only assigns positive probabilities

to actions in the corresponding player’s best-response set, then said profile must, if its individual

elements are stochastically independent, form a Nash equilibrium.35

Although appealing intuitively, Aumann and Brandenburger (1995) argue that the above result

rests on “dubious” epistemic foundations in that it is unclear, without further justification, how

players might coordinate their beliefs regarding each other’s play and why such shared beliefs should

satisfy independence. In turn, their main contribution lies in the proof that both of these conditions

are implied by common knowledge of beliefs in conjunction with a common prior.36

Result 7 (Aumann and Brandenburger, 1995). In finite N -person games where final choices

are mutually unknown, but players share a common prior over observed play σ : Ω 7→ Σ (via

a common prior over the set of extrinsic states of the world Ω) and, at some state, payoffs and

33Much like Result 1, this trivially extends to games with infinite strategy spaces. Thus, if Nash equilibrium does
not exist in such a game, then the listed epistemic conditions cannot all simultaneously be satisfied.

34Once again, this result trivially extends to games with infinite strategy spaces. Thus, if Nash equilibrium does
not exist in such a game, then the listed epistemic conditions cannot all simultaneously be satisfied.

35Independence is required because mixed strategy Nash equilibrium is an inherently independent concept. Indeed,
if we drop the independence requirement, any such profile of shared beliefs (that satisfies mutual knowledge of
payoffs/rationality) must form a correlated equilibrium.

36The key element driving this result lies in the impossibility of players to ‘agree to disagree’ when they share
a common prior and individual posteriors are commonly known (Aumann, 1976). See Brandenburger (1992b) for a
discussion of the implications of this result in the context of Nash equilibrium.
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rationality are mutually known and beliefs are commonly known, then all players share the same

beliefs (pertaining to any particular player’s choice) and said beliefs form a (possibly mixed strategy)

Nash equilibrium.37

To appreciate the practical implications of Result 7 (or the lack thereof), first note that it

only speaks to players beliefs’, not their actual play.38 Thus, since actually observed play very

well may not be Nash when players choose mixed strategies, even the extraordinarily demanding

conditions outlined above are insufficient to imply that actually observed play is, in fact, Nash. Of

course, actual play does have to be Nash if each player’s best response (relative to the mutually

shared beliefs) is a singleton. Indeed, in this case, the mutually shared beliefs would form a Nash

equilibrium in pure strategies.39

3 Applications

While Section 2 serves to document that, in general, epistemic conditions can be used to narrow

down a game’s set of conceivable outcomes, Section 3 illustrates the relative merits of this approach

by re-examining various well-known economic theories through an epistemic lens. For example,

in our first application — the Diamond-Dybvig model of bank runs (Section 3.1) — we provide

an epistemic justification for how and, thus, why the economy might arrive at equilibrium, thus

strengthening the persuasiveness of the original result. In contrast, in our second application

— Calvo’s model of sovereign default (Section 3.2) — we show how an indiscriminate choice of

Nash equilibrium (i.e. Procedure A) can yield misleading results and, ultimately, obfuscate policy-

relevant aspects of the proposed theory. Finally, in Sections 3.3 and 3.4, we present an epistemic

reading of the market for used cars akin to Akerlof (1970), competitive equilibrium as studied by

Arrow and Debreu (1954), and the two canonical duopoly models based on Cournot (1838) and

Bertrand (1883).40

37Unlike in the two prior cases, it is unclear if this result extends to games in which the strategy space is infinite.
38Nevertheless, so long as all players choose to act in accordance with others’ shared beliefs (regarding their own

play), no player has an incentive to deviate.
39In turn, if the same were true across all states of the world, then the common prior would only assign positive

probabilities to strategy profiles that are pure Nash and so global play would assume the form of a correlated
equilibrium randomizing over the relevant game’s set of pure strategy Nash equilibria.

40Since all of our chosen theories feature strategy spaces that are uncountably infinite, the mapping from epistemic
conditions to solution concepts depicted in Figure 2 may not apply. However, this does not present an issue because,
as illustrated across all five examples, the power of the epistemic approach precisely lies in its independent operation
from solution concepts (see Figure 1).
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3.1 Bank runs (Diamond and Dybvig, 1983)

While game-theoretic reasoning is now standard across many fields of economics, this was not

always the case (Samuelson, 2016). An early and highly influential contribution to bridge said gap

was the Diamond-Dybvig model of bank runs.41 Diamond and Dybvig (1983) not only explicitly

appeal to Nash equilibrium, but they were also the first to embrace indeterminacy as a means to

explain two highly disparate empirical phenomena — bank run vs. no bank run — within a unified

economic framework. We thus choose their model as the basis for our first application.

At the heart of the Diamond-Dybvig model lies the following choice by fundamentally patient

depositors: Either, they withdraw their deposits at the cost of a lower return, or they leave their

deposits in the bank at the risk of having the latter default on their claim. In effect, the de-

scribed game features two (stable) Nash equilibria: Only impatient depositors withdraw (no run)

or everyone withdraws (run). To coordinate between these two equilibria, the literature conven-

tionally proceeds by appealing to sunspots (see Peck and Shell, 2003) which effectively motivates

coordination as follows:

(A1) Assuming depositors can distinguish between two extrinsic states of the world (ξ0, ξ1), where
everyone anticipates each patient depositor not to run in state ξ0, and to run in state ξ1, then
no investor has an incentive to deviate from said play and the resulting global play forms a
correlated equilibrium. Moreover, since each depositor correctly anticipates everyone else’s
actions in both states, actually observed play must be Nash (in each state).

From a decision-theoretic perspective, the above narrative begs the following question: Is there

reason to believe that, when deciding whether to run, real-world depositors can, in fact, correctly

anticipate each others’ actions? In other words, is equilibrium, correlated or Nash, an epistemically

appropriate solution concept? In our view, the answer to this question is negative. But then, if

equilibrium is unsuitable, why does it yield such intuitive predictions? To answer this question,

Mäder (2024) notes that, during a bank run, depositors can typically observe each other’s (tentative)

actions. In turn, to the extent that actually observed play trumps any sort of pre-existing beliefs,

evolutionary concepts such as best-response dynamics represent a more suitable epistemic lens:

(A1’) Assuming depositors can observe each other’s tentative actions, and that, on a continuous
basis, a certain fraction revises their prevailing choice by myopically choosing a best response,
tentative play assumes the form a best-response dynamic path (see Gilboa and Matsui, 1991).
In turn, if the speed of revision is sufficiently fast, the ultimately observed play is Nash.

41See “Equilibrium without an auctioneer” by Peter Diamond (1987).
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Thus, akin to Prisoner’s Dilemma (see footnote 8), the reason why Nash equilibrium yields such

intuitive predictions in Diamond and Dybvig (1983) is not that it represents an epistemically appro-

priate solution concept itself, but rather because the epistemically appropriate solution concept —

best-response dynamics — naturally induces outcomes that happen to be Nash. Indeed, note that

the Diamond-Dybvig model famously features a third type of equilibrium, but this ‘tipping point’

is dynamically unstable and so it is not induced by best-response dynamics (see Mäder 2024).

Figure 3. Best-response dynamics in the Diamond-Dybvig model of bank runs

Notes: Figure 3 reproduces, albeit in a slightly augmented fashion, Fig. 3 in Mäder (2024). It depicts various best-
response dynamic paths of the Diamond-Dybvig model across various revision speeds δ and for two initial conditions
near the unstable tipping point wT . w̄(t) denotes aggregate withdrawals at time t and τ is the fraction of depositors
who withdraw either way (because they are fundamentally impatient).

If the domain of Figure 3 is interpreted as a day, Panel A intuitively captures an ‘old-fashioned’

bank run whereby news primarily transmit bilaterally via word of mouth. In turn, the faster

revision speeds captured in Panels B and C represent more modern economies, whereby the news

of an ongoing run is broadcasted by way of television and/or social media (see Cookson et al., 2023).

By the end of day, the ultimately observed outcome in economies in Panels B and C is Nash, whereas

in Panel A it is not. Of course, once read through the lens of best-response dynamics, the fact that

some depositors may fail to withdraw their money during an ongoing run does not (necessarily)

speak to their rationality or lack thereof. Instead, such depositors might have simply heard the

news too late or been unavailable otherwise.

16



3.2 A sovereign debt auction (Calvo, 1988)

Akin to the literature on bank runs, the contemporary literature on sovereign default conven-

tionally follows Calvo (1988) in rationalizing the occurrence of such default by way of multiple

theoretical equilibria.42 For our second application, we thus choose Calvo’s canonical model of

sovereign default. This choice is mainly motivated by the fact that, in this case, our epistemically

preferred solution concept — weak dominance — not only offers a novel narrative of default, but

it also offers pertinent insights from the point of view of policy.

To rationalize default by way of multiple Nash equilibria, the idea at the heart of Calvo (1988)

is that a sovereign bond’s credit risk is increasing, at least weakly, in its own interest rate.43 To

see this, consider Figure 4, which reproduces, in a slightly altered fashion, Calvo’s Figure 2.

Figure 4. Optimal repudiation θ as a function of the auction-implied yield Rb in Calvo (1988)

Notes: Figure 4 reproduces Fig. 1 from Campbell and Mäder (2023), a slightly augmented version of Fig. 2 in Calvo
(1988). It depicts the government’s optimal choice of taxation x and repudiation share θ as a function of the primary
market yield Rb. As such, it contains three main insights: (i) credit risk is weakly increasing in Rb, (ii) investors
strictly prefer bonds when Rb ∈ (R0, R1), and capital when Rb > R1, and (iii) equilibrium is indeterminate.

To coordinate between ‘good’ equilibria à la E0 and ‘bad’ equilibria à la E1, the literature

conventionally proceeds by appealing to sunspots (see, for example, Cole and Kehoe, 2000):

(B1) Assuming investors can distinguish between two extrinsic states of the world (ξ0, ξ1) where
it is mutually assumed that each investor anticipates everyone else to bid R0 in state ξ0, and
R1 in state ξ1, then no investor has an incentive to deviate from their prescribed play and the
resulting global play forms a correlated equilibrium. Moreover, since each depositor correctly
anticipates everyone else’s actions across both states, actually observed play is Nash.

42Indeed, after proving that equilibrium in Eaton and Gersovitz (1981) is unique, Auclert and Rognlie (2016)
elaborate as follows: “Our objective is not to deny that sovereign debt markets can be prone to self-fulfilling crises
[...]. Instead, we hope that our results may help sharpen the literature’s understanding of the assumptions that are
needed for such multiple equilibria to exist.”

43In Calvo (1988), since default is certain whenever θ > 0, θ does not technically reflect credit risk.
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From a decision-theoretic perspective, the above narrative begs the following question: Is there

reason to believe that, when deciding how to bid in a sovereign debt auction, real-world investors

can, in fact, correctly anticipate each others’ bids? In other words, is equilibrium, correlated or

Nash, an epistemically appropriate solution concept? In our view, under ordinary circumstances,

the answer is negative. But then, if equilibrium is not suitable, which solution concept is suitable?

To answer this question, Campbell and Mäder (2023) note that, even though investors may not

know what others are bidding, they very well may possess knowledge and/or be willing to make

assumptions that allow them to narrow down the types of bids that will, or will not, be submitted.

For example, so long as all investors are both rational and cautious, we can rule out a single round

of weakly dominated strategies,

(B1’) Assuming each investor is both rational and cautious (and knows how the government oper-
ates), no bids below the risk free rate R0 or in excess of R are submitted.44

Intuitively, the reason why higher yields are only appealing up to a certain point is that the

government responds to higher yields via increased taxation x and, ultimately, repudiation θ.45 In

turn, although Assumption (B1’) significantly narrows down the types of bids that are submitted,

it is insufficient to imply that any bids are submitted in the first place.46 Thus, to rule out rollover

crises and/or obtain a unique prediction, we require additional epistemic assumptions,

(B2’) Assuming payoffs are mutually known and each investor assumes (B1’), they correctly infer
that R0 ≤ Rb ≤ R < R1 and, thus, optimally choose to participate in the auction.

(B3’) Assuming each investor assumes (B2’), they correctly infer that every investor participates
in the auction. In turn, so long as neither successful, nor marginal bids can influence the
ultimately transacted rate when every investor participates in the auction, bidding R0 is the
uniquely remaining, cautiously rational strategy for each investor.47

In summary, rationality, caution, and two layers of mutual assumption (alongside second-order

mutual knowledge of the game and the government’s operations) yields the ‘good’ Nash equilibrium

(i.e. E0 in Figure 4) via three rounds of elimination of weakly dominated strategies (3EWDS).48

At this point, the reader might, and hopefully does, wonder whether 3EWDS does, in fact,

represent a suitable epistemic concept to describe an ordinary sovereign debt auction. In the

44Thus, note that the ‘bad’ equil. E1 has each investor playing a weakly dom. strategy, a rather odd proposition.
45In fact, depending on the deadweight cost of taxation, investors may systematically avoid bids that are even

lower than R (see Campbell and Mäder, 2023).
46In particular, this is because forgoing the auction is strictly preferred to any bid in [R0, R] whenever Rb > R1

(where investors strictly prefer capital over bonds).
47See Campbell and Mäder (2023) for a discussion of two kinds of auction pricing in the Calvo model..
48The ‘bad’ equilibrium is ruled out by rationality and caution as it is weakly dominated by any bid in [R0, R1).
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authors’ view, given the strong nature of second-order mutual assumption of rationality and caution,

1EWDS and 2EWDS are likely more appropriate. Specifically, to err on the side of caution, we

lean toward 1EWDS as our preferred concept (see Campbell and Mäder, 2023).

From an economic standpoint, the choice between 1EWDS and 2EWDS is highly consequential.

Indeed, while rollover crises are a possibility under rationality and caution (1EWDS), they are ruled

out as soon as rationality and caution are mutually assumed (2EWDS). In turn, from the point of

view of policy, an interesting question is then whether it might be possible to rule out rollover crises

even if rationality and caution are not mutually assumed (i.e. under 1EWDS). In Campbell and

Mäder (2023), we answer this question affirmatively and, thus, further underscore the importance

of considering carefully a strategic environment’s prevailing epistemic state.

In summary, akin to the Diamond-Dybvig model of bank runs, we have argued that Nash

equilibrium represents an epistemically unsuitable lens to study ordinary debt auctions as described

by Calvo (1988). However, unlike in the case of a bank run, investors participating in such auctions

realistically cannot observe each others’ tentative actions. In effect, since investors must form

beliefs based on their knowledge and/or assumptions about each other, we considered and weighed

various levels of weak dominance.

3.3 A market for a lemon (Akerlof, 1970)

Since the seminal contribution by Akerlof (1970), it has been well-known that information

asymmetries regarding a traded good’s quality can lead to market collapse, but less is known about

information asymmetries of the epistemic kind. For example, does the market collapse if the seller

of a used car assumes that the prospective buyer is rational and cautious, but the buyer makes no

such assumptions about the seller? Conversely, what if the buyer assumes that the seller is rational

and cautious, but this assumption is incorrect? It is only by answering questions of this type that

we can elucidate the root cause of the market’s collapse.

Following the above logic, this subsection studies an Akerlof-style market for lemons through an

epistemic lens. By proceeding as such, we are able to reconcile the fact that Akerlof’s article, prior

to acceptance, was rejected on the grounds of being both “trivial” and “too general to be true”

(see Gans and Shepherd, 1994). In particular, we show that information asymmetries regarding

a used car’s quality are, in fact, not in and of themselves (i.e. irrespective of the chosen solution
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concept) sufficient to imply that the market will collapse. This serves as a powerful illustration of

the broader point that economic theory does not in and of itself generate any predictions. Instead,

it is a modeler’s reading of their theory — through the lens of a solution concept, an epistemic

state, or both — that generates the predictions (see Figure 1).

For purposes of illustration, let us consider a seller and a (prospective) buyer of a used car

whose quality θ is distributed uniformly in Θ = [0, 1]. Letting z denote an indicator of the car’s

sale at the price p, we assume that individual utility is given by uS = z[kp−θ] and uB = zE[θ−p|p],

where k ≥ 1 (to reflect the seller’s relatively strong preference for liquidity) and θ is known to the

seller, but not to the buyer. In turn, the seller must choose a continuous, non-decreasing price

mapping po : Θ 7→ [0, 1] at which they wish to offer the car for sale, whereas the buyer must specify

a non-increasing function z : [0, 1] 7→ {0, 1} such that trade occurs if and only if z(po(θ)) = 1.

To narrow down the set of conceivable outcomes of the described game, first note that, as in

the two prior applications, Nash equilibrium is contextually inappropriate because, under ordinary

circumstances, there is no reason to believe that our two players can correctly anticipate each

other’s choices.49 However, much like in the case of a sovereign debt auction, they very well may

possess knowledge and/or be willing to make assumptions about each other:

(C1) Assuming the seller is rational and cautious, they will not choose to offer the car at any price
po(θ) < θ/k.50

(C2) Assuming the buyer is rational, cautious, and aware of the true uniform prior of θ, they will
reject any offer in excess of one half, i.e. z(po) = 0 for any po > 1

2 .51

(C3) Further assuming that the buyer correctly assumes (C1), they recognize that, for any actually
observed offer po, the car’s quality must satisfy θ ≤ kpo. In turn, they infer E[θ|po] = E[θ|θ <
kpo] = min{kp

o

2 , 1
2} and, thus, optimally choose z(po) = 1[min{kpo, 1}/2− po ≥ 0].52

(C4) Further assuming that the seller correctly assumes (C2), they recognize that the buyer will
reject any offer po > 1

2 and, thus, only make offers satisfying po(θ) < min{θ/k, 1
2}.

49Incidentally, the set of Nash equilibria features various strategy profiles that are dubious at best (e.g. po(θ) = 1
for any θ ∈ [0, 1] and z(po) = 0 for any po ∈ [0, 1]).

50Rationality is in and of itself insufficient to imply po(θ) < θ/k, namely because the seller might believe that the
buyer will not accept any offer. In this context, caution represents a natural assumption in that it rules out such
weakly dominated behavior (see Appendix B).

51Once again, rationality is in and of itself insufficient to imply z(po) = 0 for po > 1
2
, namely because the buyer

might believe that the seller will never make such an offer (see any column of Figure 5). In this context, caution
represents a natural assumption in that it rules out such weakly dominated behavior (by forcing the buyer to consider
the possibility that the seller might in fact make such an offer, see Appendix B).

52Technically, the buyer is indifferent (between accepting and rejecting) if uB(po|z = 1) = min{ kp
o

2
, 1
2
} − po = 0

(see Figure 6) in which case, unless any further assumptions are made, z(po) ∈ {0, 1} are both best responses. To
avoid such indeterminacy, we assume that the buyer lexicographically prefers to buy if they are first-order indifferent.
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Since (C1)-(C2) and (C1)-(C4) amount to one and two rounds of elimination of weakly domi-

nated strategies respectively, the described strategic implications are summarized in Figure 5.

Figure 5. Iterated elimination of weakly dominated strategies (for k = 1.99)

Notes: Figure 5 illustrates the described game’s set of conceivable outcomes under various forms of weak dominance.
For example, when nothing is known about either player (i.e. 0EWDS), the set of conceivable outcomes is given by
the entire strategy space. In turn, if both players are rational and cautious (i.e. 1EWDS), the seller (top row) only
makes offers satisfying po(θ) ≥ θ/k, and the buyer (bottom row) only accepts offers satisfying po ≤ 1

2
. If, in addition,

rationality and caution are mutually assumed (i.e 2EWDS), the buyer rejects any positive offer.

Intuitively, the reason why the market collapses under 2EWDS is that the prospective buyer

leverages the seller’s observed price offer to infer information about the car’s quality. Specifically,

as famously outlined in Akerlof (1970), a lower price offer is viewed as indicating a lower expected

quality of the car. To illustrate this link, Figure 6 depicts the car’s expected quality (alongside the

buyer’s payoff of accepting) across a range of price offers po.

Figure 6. Expected car quality and buyer payoff under 2EWDS

Notes: Figure 6 depicts the expected car quality as well as the prospective buyer’s resulting payoff of accepting across
a range of price offers po. In turn, since rejecting the seller’s offer yields utility of zero, the blue shaded area reflects
the range of offers which the buyer is willing to accept. That is, the buyer is willing to accept any offer up to and
including po = 1

2
in Panels A and B, but no (positive) price offer in Panel C.

In Figure 6, note that the prospective buyer is principally willing to buy in Panels A and B,

but not in Panel C.53 Indeed, it can be shown that the buyer are willing to accept any offer up to

po = 1
2 so long as k ≥ 2, but no positive offer when k < 2 (as shown in Figure 5).

53The buyer is never willing to accept an offer in excess of 1
2

because the car’s unconditional expected value is 1
2
.
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While the above description of market collapse is hardly novel, our precise epistemic character-

ization thereof is. In turn, said characterization yields two main insights.

First, while the market does collapse under 2EWDS, the same is not necessarily true under

1EWDS (see Figure 5). This is because, under 2EWDS, the buyer’s reluctance to accept an offer

not only reflects their rationality and caution, but also their perception of the seller. Indeed, the

reason why the car’s expected value is perceived to be increasing in the observed price offer is

that the buyer assumes, quite reasonably, that the seller would not offer the car at a price below

their own valuation.54 Following this logic, it is tempting to conclude that rationality, caution,

and mutual assumption thereof (as reflected by 2EWDS) represent the ‘tightest’ set of epistemic

conditions that guarantee a market collapse. This is not so.

Second, by explicating and disentangling the four assumptions that collectively form 2EWDS,

we can examine what would happen if a particular buyer-seller pair were most suitably described

by an epistemic state that is asymmetric and/or if players made assumptions that are false. The

primary benefit of adopting such a granular point of view is that it permits an even preciser,

or ‘tighter’, description of the conditions that lead to market collapse. Perhaps unsurprisingly,

whether the market collapses exclusively depends on the characteristics of the prospective buyer.

Specifically, since neither disposing of (C4) nor (C1) fundamentally alters the buyer’s calculus, the

smallest set of assumptions to imply a market collapse is (C2) and (C3). That is, so long as the

buyer is rational and cautious while assuming that the seller is as well, they will reject any offer

irrespective of whether the seller is, in fact, rational, cautious, and/or what their beliefs are.

Although we have shown that rationality and caution are in and of themselves insufficient

to imply a market collapse in the described model, our main point is not to call into question the

prediction of such a collapse. Instead, our main point is to explicate the precise conditions that lead

to market collapse. In particular, if buyer-side rationality, caution, and assumption of seller-side

rationality and caution are perceived as a contextually (i.e. in the specific context of a particular

buyer-seller pair) appropriate epistemic description, the prediction of a market collapse is plausible.

Conversely, if the listed conditions are perceived as contextually inappropriate, the same prediction

is less plausible.

54This assumption is correct because the seller was, in fact, assumed — in (C1) — to be both rational and
cautious. If the seller were only rational, but not cautious, they very well might offer the car at a price below their
own valuation, namely because they might assume that the buyer will reject their offer anyway.
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3.4 Market economies (Arrow and Debreu, 1954)

For our final set of applications, in an attempt to diminish the perceived dichotomy between

game theory and “classical economic theory”55, we apply our decision-theoretic lens to various types

of market economies. As part of this effort, we revisit a long-standing debate among Walrasian

scholars, namely if and how one might expect such economies, competitive economies in particular,

to reach ‘equilibrium’.56

Classical competitive economies (collective price-taking)

To formally frame our discussion, we start by considering the very general, perfectly compet-

itive framework studied by Arrow and Debreu (1954) (see Appendix C). Within this setting, the

referenced authors’ main contribution was to prove the existence of a competitive equilibrium as

given by a price vector p? that induces market clearing in each good’s market. For this, to be able

to invoke Nash equilibrium as part of their proof, Arrow and Debreu (1954) entrust the setting of

prices to an auxiliary third party,

(D1) Assuming that prices are set by a “fictitious” third party, the Walrasian “market partici-
pant”, each non-predetermined variable is chosen by a designated agent in the economy.57

Specifically, suppose the market participant’s optimization problem is given by,

max
p∈Rl≥0

pz? s.t.
l∑

i=1

pi = 1 (1)

where z?i (p) denotes excess demand of good i for each market i ∈ {0, 1, ..., l}. The above

optimization problem is constructed so as to cause prices to rise/fall when excess demand is posi-

tive/negative,

(D2) Assuming the Walrasian ‘market participant’ is unaware of the functional relationship z?(p),
but that they can observe z?(p) following each price announcement, and that they continu-
ously and myopically revise the prevailing price vector in the direction of each dimension’s
best response, we obtain the following canonical “law of supply and demand” (Arrow and
Debreu, 1954),

55“Classical economic theory did manage to sidestep the game-theoretic aspects of economic behavior by postu-
lating perfect competition, i.e. by assuming that every buyer and every seller is very small as compared with the size
of the relevant markets, so that nobody can significantly affect [...] prices by his actions.” (Harsanyi, 1995)

56See Walker (1987) and Walker and van Daal (2014) for a historical account of Walrasian tâtonnement and
two popular interpretations thereof: a dynamic process to mimic real-world competitive markets moving towards
equilibrium and a purely static interpretation rationalizing all observed behavior as a manifestation of equilibrium.

57Walker and van Daal (2014) describe the popular interpretation of the market participant as an auctioneer a
“momentous error”. Instead, this auxiliary agent is best understood, they argue, as a “crier” who simply broadcasts
the prices quoted to them by the agents representing the buyers and sellers.
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ṗh =


0 if ph = 0, z?h(p) < 0

H[z?h(p)] otherwise

(2)

where the function H with H(0) = 0 and H ′ > 0, as originally proposed by Samuelson (1941),

can be used to parameterize the market participant’s ‘speed’ of price adjustment. To illustrate

the dynamic process induced by (2), let us examine a rudimentary one-consumer, one-producer

economy. Specifically, consider a unit mass of consumers who choose labor supply so as to maximize

their utility as follows,

n?S = argmax
nS

c1−γ − 1

1− γ
− ξ

n1+ 1
ν

S

1 + 1
ν

 s.t. c = wnS + π (3)

such that optimal labor supply n?S =
[
w1−γ

ξ

] ν
1+γν

is monotonically increasing in w so long as

γ < 1. Further suppose there is a unit mass of firms who choose labor demand so as to maximize

profits as follows,

n?D = argmax
nD

π s.t. π = znαD − wnD (4)

such that optimal labor demand n?D =
[
αz
w

] 1
1−α is monotonically decreasing in w so long as

α < 1. Thus, assuming α < 1 and γ < 1, competitive equilibrium is unique and given by the wage

that equates labor supply n?S and labor demand n?S depicted in Figure 7A. Moreover, as shown

in Figure 7B, Walrasian tâtonnement asymptotically induces the competitive equilibrium w? for

initial conditions w0 both above and below w?.58 Indeed, this is unsurprising in that Walrasian

tâtonnement represents a special instantiation of best-response dynamics, a solution concept under

which any “socially stable strategy” is known to be Nash (see Gilboa and Matsui, 1991).59

While the depicted competitive equilibrium’s global stability renders it a conceptually appealing

candidate for our exemplary economy’s actually observed outcome, there are two factors which limit

the practical relevance of Walrasian tâtonnement as a solution concept more broadly. First, many

58In fact, the monotonic nature of supply and demand are sufficient to imply limt→∞ wt → w? for any w0 ≥ 0.
59The converse is not true such that a primitive invocation of Nash equilibrium is not only inappropriate from

a decision-theoretic perspective (see Figure 2), but also because the set of Nash equilibria and the set of strategy
profiles that are stable under (2) are not equivalent (i.e. some competitive equilibria are unstable). Indeed, Arrow
and Debreu (1954) warn: “Neither the uniqueness nor the stability of the competitive solution is investigated in this
paper”.
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competitive economies feature excess demand functions that are not sufficiently well-behaved to

induce equilibrium that is globally stable.60 Second, and much more importantly in our context, the

epistemic assumptions that underlie Equation (2) — (D1) and (D2) — are explicitly “fictitious”.

Indeed, the only reason that assumptions (D1) and (D2) even qualify as epistemic, if at all, is that

they were designed as conceptual placeholders in lieu of a market economy’s actual epistemic setting.

While this may be suitable in certain instances, namely when neither supply, nor demand get to

choose the transacted price (e.g. NYSE61), tâtonnement is decision-theoretically inappropriate in

many, if not most, other environments. But then, if not Walrasian tâtonnement, which solution

concept is appropriate when prices are chosen by literal, not fictitious market participants?

Figure 7. Tâtonnement in a one-consumer, one-producer competitive economy

Notes: Panel A of Figure 7 depicts the market for labor in the described one-consumer, one-producer economy
parameterized by γ = 1

3
, ξ = 3, ν = 5, α = 1

3
, z = 3. Panel B illustrates, for two separate initial conditions and

H(z) = 15z, the process of tâtonnement induced by (2), with the Walrasian ‘market participant’ continuously
adjusting the real wage until the labor market has cleared.

Other competitive economies (price-setting)

In many markets, Walrasian tâtonnement represents an inappropriate solution concept because

prices are in fact set by actual (not fictitious) market participants. For our two final applications,

we thus apply our decision-theoretic lens to the canonical market for a homogenous good and its

two most well-known forms of industrial organization: Bertrand and Cournot.

Bertrand competition. In the standard Bertrand duopoly, the unique Nash equilibrium is given

by both firms offering the good at a uniform price equal to marginal costs, i.e. p1 = p2 = c, where

c denotes a symmetric marginal cost.62 However, recall that Nash equilibrium is only epistemically

60Indeed, the same is true in pure exchange economies (see Sonnenschein, 1972; Mantel, 1974; Debreu, 1974).
61While the Walrasian “crier” analogy (see Walker and van Daal, 2014) exquisitely fit the New York Stock Ex-

change’s open-outcry era, it retains its relevance under today’s all-electronic trading regime.
62By standard Bertrand model, we mean continuous/downward sloping demand, no capacity constraints, zero

fixed costs, and symmetric marginal costs c.
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suitable if actual/final choices are mutually known, a fairly strong assumption in the context of

Bertrand. Yet, even if Nash equilibrium is deemed to be inappropriate as a solution concept, there

are still two epistemic arguments to be made in favor of the Bertrand-Nash outcome. First, if payoffs

and rationality are common knowledge, the only rationalizable outcome is p1 = p2 = c (as implied

by iterated elimination of never-best responses).63,64 In addition, and perhaps most convincingly,

the latter is also the unique ‘socially stable strategy’ such that, if both firms can continually revise

their strategy in response to the other’s observed price, the resulting best-response dynamic path

ultimately (i.e. asymptotically) induces p1 = p2 = c for any strategic initial condition.

Cournot competition. In the standard interpretation of Cournot duopoly, firms are viewed

as choosing quantities while taking prices as given, a rather artificial premise. However, Kreps

and Scheinkman (1983) show that, under certain conditions, the canonical Cournot outcome can

also be explained as a manifestation of Nash equilibrium with price-setting, namely if firms first

commit to building production capacities and then, in a second stage, compete via price à la

Bertrand. However, as before, Nash equilibrium only represents a suitable solution concept so long

as actual/final choices are mutually known, a very strong assumption in this context. However, as

before, even if Nash equilibrium is deemed to be inappropriate as a solution concept, there is still

an epistemic argument to be made in favor of the Cournot-Nash outcome. Specifically, suppose

it is in firms’ best interest to set their price competitively so as to sell their entire inventory in

the second stage and that this is common knowledge.65 Then, if both firms can continually revise

their production capacity in response to the other’s observed capacity, the resulting best-response

dynamic path ultimately (i.e. asymptotically) induces the Cournot outcome for any initial condition

so long as it is globally stable.

63To obtain this result despite the game’s infinite strategy space, we require a transfinite number of eliminations
(see Lipman, 1994).

64Interestingly, the same result does not obtain under cautious rationalizability, namely because pi = c is weakly
dominated by any pi ∈ (c, p̄). In effect, the set of cautiously rationalizable strategy profiles is empty, a symptom of
the Bertrand model’s uncountably infinite strategy space. In turn, if the price space were finite, the unique cautiously
rationalizable outcome would be p1 = p2 = c+ε, the ‘larger’ (and more plausible) of said model’s two Nash equilibria.

65While this is not true in general, it is true if demand is isoelastic, i.e. p = ax−b, with b ∈ (0, 1). In conjunction
with common knowledge, this implies p1 = p2 = a[x1 + x2]−b in the second stage and both firms know this.
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4 Discussion

On transparency (Procedure A vs. B)

For each of our applications in Section 3, we proposed an epistemic state so as to capture the

specific strategic setting at hand and, in turn, directly derived a corresponding set of empirical

predictions therefrom. By proceeding as such, we hope to have convinced the reader of the relative

merits of Procedure C in Figure 1. However, even if the indirect path via existing solution concepts

(i.e. Procedure B) remains preferred, the primary objective of Section 3 was to demonstrate the

following fact: Invoking solution concepts primitively (i.e. Procedure A) effectively amounts to

imposing implicit assumptions about the modeled players’ rationality and/or their beliefs (see

Figure 2). As such, the difference between Procedures A and B does not lie in the assumptions

being made, but in the fact that all assumptions, including epistemic ones, are made explicitly

under Procedure B (and C), but not under Procedure A.66

On versatility (Procedure B vs. C)

Aside from transparency, the main benefit of the epistemic approach lies in its versatility.

Indeed, a key insight from our various applications is that, oftentimes, it is not necessary to exhaust

all of a canonical solution concept’s epistemic requirements to obtain the same empirical predictions.

For example, in Section 3.3, we showed that 2EWDS — as induced by rationality, caution, and

mutual assumption thereof via Procedure B — implies that the market for a used car must collapse,

but the same is true even if the listed assumptions only apply to the buyer.67 For example, even if

the seller is not actually rational and/or cautious, the market continues to collapse so long as the

buyer assumes that they are. However, since asymmetric solution concepts of the described type

do not exist, it is tempting to study, or ‘solve’, the described game through the lens of 2EWDS, or

even IEWDS. While proceeding as such is certainly possible, it effectively weakens the presented

argument, namely because the epistemic conditions that underpin 2EWDS and IEWDS are stronger

than the conditions that are required to imply a market collapse.68 It is in contexts of this type

that Procedure C has a distinct advantage over Procedure B.

66For example, by explicating the assumptions that are required to lead to sovereign default, the reader can assess
more transparently whether they should, in fact, expect to observe such default (see Section 3.2).

67As described in Section 3.3, the minimal set of conditions that jointly imply market collapse is that the buyer is
rational, cautious, and that they assume (correctly or incorrectly) that the seller is rational and cautious as well.

68So long as nothing is known about the buyer-seller pair, we naturally seek to know the weakest conditions that
lead to a market collapse.
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On Nash equilibrium

Across our five applications in Section 3, none of the proposed epistemic states mapped into

Nash equilibrium as the contextually appropriate solution concept. Since Nash equilibrium requires

players to know, or at least correctly anticipate, each other’s actual/final choices, this is rather

unsurprising. Indeed, akin to Dekel and Siniscalchi (2015), our reading of Nash equilibrium is

that it is inappropriate in most real-world contexts. At the same time, it is worth noting that all

predictions derived in Section 3 ultimately assumed the form of such equilibrium. To reconcile this

seeming contradiction, three remarks are in order.

First, it is crucial that we distinguish between Nash equilibrium as a solution concept and

strategic outcomes that are Nash. In particular, the fact that a commonly accepted outcome is

Nash does not imply, even if Nash equilibrium is unique, that the relevant solution concept is in fact

Nash equilibrium.69 For example, in prisoner’s dilemma (see G2 in Appendix A), even if players’

choices are mutually unknown, individual knowledge of payoffs and rationality are sufficient to

deduce that the game’s (unique) Nash equilibrium will obtain, namely because a single round of

elimination of strictly dominated strategies implies this outcome. In effect, our cautious reading

of Nash equilibrium as a solution concept should not be taken to mean that we advocate for a

dismissal of Nash outcomes.

Second, since all of our derived outcomes are Nash, it is tempting to think that, even if Nash

equilibrium is contextually inappropriate as a solution concept, ‘equilibrium selection’ à la Proce-

dure A might still be viable. As indicated in the introduction, such inference is misguided for at

least two reasons. First, as illustrated in Figure 1, the process of ‘equilibrium selection’ inevitably

requires an assessment which equilibria are deemed to be plausible. This remains problematic be-

cause what constitutes a ‘plausible’ outcome is precisely what a theorist wishes to derive from their

theory and, as such, should not be invoked primitively. Second, in all applications in Section 3, our

goal was precisely to explicate the epistemic assumptions that are required to induce the canonical

Nash outcome. In turn, if the required assumptions are perceived as plausible, said plausibility

naturally extends to the resulting Nash prediction. However, if some of the required assumptions

are perceived as implausible, then the reader can discern more transparently the predictions’ prac-

69Indeed, any given outcome might feature in a large number of sets of solutions (each pertaining to a solution
concept), but this does not imply that each such concept is contextually appropriate. However, if a commonly accepted
outcome does not feature in a solution concept’s set of solutions, the latter is likely contextually inappropriate.
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tical limitations. For example, in Section 3.3, we showed that buyer-side rationality, caution, and

assumption of seller-side rationality and caution are sufficient to imply market collapse. Thus, if

there is reason to believe, in the context of a specific buyer-seller pair, that the buyer does not

assume that the seller is rational and cautious, the occurrence of a sale cannot be ruled out.

Third, the reason why all predictions in Section 3 were Nash is because, in each application,

the proposed epistemic state either implied an evolutionary convergence towards such equilibrium

or it implied a ‘self-evident way of play’.70 Thus, across all of our applications, Nash equilibrium

was not assumed. Instead, it was, much like in prisoner’s dilemma, a natural consequence of the

proposed epistemic state.

On necessary vs. sufficient conditions

Once solution concepts are recognized as reflecting an underlying epistemic state, a frequently

resurfacing point of interest lies in the distinction between necessary and sufficient conditions. For

example, since Aumann and Brandenburger (1995) provide sufficient conditions for Nash equilib-

rium, it is tempting to ask which conditions are necessary. However, in the context of solution

concepts, identifying necessary conditions adds little value because they are designed to reveal cir-

cumstances under which it is unequivocally inappropriate to invoke a solution concept, not ones

under which it is, in fact, appropriate. Indeed, even the most basic building block of any solution

concept — rationality — is not actually a necessary condition.71 For example, as pointed out by

Aumann and Brandenburger (1995), even in the absence of rationality, players can always “stum-

ble” into a Nash outcome by accident, a fact that is surely insufficient to warrant restricting our

attention to such outcomes (by invoking Nash equilibrium) for purposes of prediction .

On infinite strategy spaces

Although most solution concepts themselves naturally extend to infinite strategy spaces, there

are two main obstacles associated with their application in such contexts. First, epistemic states

may not map as neatly into existing solution concepts under infinite strategy spaces.72 Second,

various finite-game results linking solution concepts to their corresponding set of solutions may

70That is, the proposed epistemic state was sufficient for each player to infer which singular strategy others would
ultimately choose. In this case, rationality immediately implies that the outcome must be Nash (recall Result 1).

71Of course, the absence of rationality is not the same as players systematically avoiding best responses.
72For example, in games with infinite strategy spaces, the limit of nth order of mutual knowledge of rationality

need not converge to common knowledge of rationality as required by rationalizability (see Lipman, 1994).
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not extend to infinite strategy spaces.73 That is, since both the mapping from epistemic states

to solution concepts and the mapping from solution concepts to solutions may break down under

infinite strategy spaces, Procedure B shown in Figure 1 may fail.

It is tempting to interpret the fact that Procedure B may fail under infinite strategy spaces

as a limitation of the epistemic approach. For two reasons, the opposite is true. First, when

studying an economic model through the lens of a solution concept, an elevated understanding of

the latter’s epistemic requirements, even if negative, can only strengthen our analysis. For example,

the fact that, in games with infinite strategy spaces, the limit of nth order of mutual knowledge of

rationality need not converge to common knowledge of rationality (see Lipman, 1994) as required by

both rationalizability and cautious rationalizability may, and probably should, motivate a theorist

to consider alternate solution concepts when studying the canonical Bertrand model. Second, a

key strength of the epistemic approach is precisely that it can operate independently of existing

solution concepts (i.e. Procedure C). Thus, even if a game’s infinite strategy space causes the the

two referenced mappings to break down, our ultimate object of interest — the predictions — can

still always be derived via the direct mapping from the specified epistemic state.

Final thought

A natural reservation regarding the practical implementation of the epistemic approach is that,

for many economic models, it may be challenging to specify an epistemic state that is both plausible

and conducive to generating sharp predictions. This very well may be true, but the encountering of

such obstacles represents an intended functionality, not an unintended flaw. Indeed, recall that the

difference between Procedures A and B does not lie in the assumptions being made. Instead, the

difference lies in the fact that all assumptions, including epistemic ones, must be disclosed under

Procedure B, but not under Procedure A.

5 Conclusion

If used for purposes of prediction, a defining element of ‘good’ economic theory is that any

predictions derived therefrom are not chiefly driven by assumptions that are implausible, implicit,

or both. Following this logic, this paper proposes that applied theory, rather than primitively

73For example, in games with infinite strategy spaces, Nash equilibrium may not exist.
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invoking solution concepts (i.e. Procedure A), derive its predictions from a primitive epistemic

state instead (i.e. Procedures B and C). Given its high level of transparency and versatility, we

hope to have convinced the reader of the relative merits of the epistemic approach and, ultimately,

that they will consider its adoption as part of their future research.

A Two exemplary games

Figure 8. G1: A coordination problem

β1 β2

α1 (1, 1) (0, 0)

α2 (0, 0) (0, 0)

Notes: Due to Myerson (1978), the game depicted in Figure 8 features two rationalizable strategy profiles that are
also Nash — (α1, β1) and (α2, β2) — but only one plausible outcome as given by (α1, β1). Indeed, as long as players
cannot rule out that the other will choose β1/α1, caution dictates that they will play α1 and β1 (see Pearce, 1984).

Figure 9. G2: Prisoner’s dilemma

β1 β2

α1 (−1,−1) (−3, 0)

α2 (0,−3) (−2,−2)

Notes: Figure 9 depicts the canonical game of prisoner’s dilemma. Since both players have a strictly dominant
strategy, they need not concern themselves with the other’s play as a single round of elimination of strictly dominated
strategies immediately yields (α2, β2). In effect, individual rationality is in and of itself sufficient to guarantee the
outcome (α2, β2).

B Assumption and lexicographic probability systems

In Section 2, in our construction of Figure 2, we made frequent and extensive use of the notion

of ‘knowledge’ so as to rule out various rounds of opponents’ never-best responses. In contrast, to

motivate the elimination of weakly dominated strategies in our practical applications in Section 3,

we instead appealed to the more nuanced notion of (BFK-)assumption.

Assumption. An event E is said to be (BFK-)assumed if each element in E is perceived as

infinitely more likely than each element in not-E (see Brandenburger, Friedenberg, and Keisler,

2008).
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Unlike knowledge, assumption allows for events to be considered with positive probability even

though they are first-order excluded and, as such, allows an elimination of multiple rounds of weakly

dominated strategies.74 To formalize idea, the literature typically appeals to the proposition that

players’ beliefs assume the form of a lexicographic probability systems (LPS).

Lexicographic probability system. A lexicographic probability system (LPS) is a finite, lex-

icographically ordered sequence of probability measures σ ≡ (φ0, φ1, ..., φk) for some finite k ∈ N

(see Blume et al., 1991a).

Indeed, in a seminal contribution, Brandenburger, Friedenberg, and Keisler (2008) (BFK) com-

bine LPS with lexicographic utility and the LPS-based notion of ‘assumption’ in hopes of providing

an epistemic characterization of iterated admissibility (IA), i.e. iterated elimination of weakly

dominated strategies. Technically falling just short of their objective, BFK inspired an active re-

search program which continues to seek epistemic characterizations of IA (see Yang, 2015; Lee,

2016; Dekel et al., 2016; Catonini and DeVito, 2021; Keisler and Lee, 2023). In this context,

the literature generally distinguishes between the implicit approach, whereby belief hierarchies are

modeled indirectly via ‘type structures’, and the explicit approach, whereby belief hierarchies are

modeled directly. For purposes of illustration, we adopt the explicit approach and, thus, proceed

by borrowing the notation from Lee (2016). In particular, we use X denote the set of states of the

world and define inductively as follows,

X0
i ≡ Si X1

i ≡ X0
i ×N (X0

−i) (5)

where we assume the set of players I to be finite and the strategy space Si to be Polish for each

i ∈ I.75 In turn, for each n ≥ 2, we let,

Xn
i ≡ {(xn−1

i , hni ) ∈ Xn−1
i ×N (Xn−1

−i ) | margXn−2
−i

hni = hn−1
i } (6)

such that, by construction, any resulting sequence of LPS hi ≡ {hji}j≥1 lies in the set of coherent

74A single round of elimination of weakly dominated strategies is often motivated by way of the assumption that
beliefs have full-support. For example, Pearce (1984) proposed that after all never-best responses have been deleted,
an elimination of all weakly dominated strategies in the remaining ‘rationalizable set’ is warranted so long as players
are cautious in that they weigh all “likely” events with positive probability. Conversely, Brandenburger (1992a) and
Börgers (1994) motivate a single elimination of weakly dominated strategies before iterated elimination of strictly
dominated strategies, a solution concept originally due to Dekel and Fudenberg (1990), by considering the case in
which rationality is “common first-order knowledge” and “approximate common knowledge” respectively.

75Aside from defining coherency in a non-standard fashion, Lee (2016) also assumes that the strategy space is
finite. Thus, while their notation naturally extends to our more general setting, their results do not.
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belief hierarchies H1
i , i.e. hi ∈ H1

i ⊂ H0
i ≡

∏
k≥0N (Xk

−i).
76 In effect, player i’s state space is then

given by,

Xi ≡ {(xji )j≥0 ∈
∏
k≥0

Xk
i | x

j
i = proj

Xj
i
xj+1
i ∀j ≥ 0} (7)

such that each element in Xi features a strategy and a corresponding coherent hierarchy of

beliefs, i.e. xi = (si, hi), where si ∈ Si and hi ∈ H1
i for each xi ∈ Xi. Across agents, we then say

that a state (s, h) ∈ X ≡ ×i∈IXi satisfies BFK-rationality if projX1(s, h) ∈ ×i∈IBFK1
i , where

BFK1
i ≡ {(si, h1

i ) ∈ X1
i | h1

i ∈ N+(S−i) ∧ si ∈ BRi(h
1
i ) } (8)

for each i. In turn, for each m ≥ 1, we say that a state (s, h) ∈ X satisfies BFK-rationality and

mth order assumption of BFK-rationality if projXm+1(s, h) ∈ ×i∈IBFKm+1, where for each i,

BFKm+1
i ≡ {(si, {hji}

m+1
j=1 ) ∈ Xm+1

i | (si, {hji}
m+1
j=1 ) ∈ BFKm

i ×A(BFKm
−i, X

m
−i) } (9)

where A(E,F ) denotes the set of LPS on F under which the event E ⊆ F is (BFK-)assumed

(see Lee, 2016). We are then ready to apply the above equations to our model economies from

Sections 3.1. and 3.2.

Calvo’s sovereign debt auction

In our Calvo application in Section 3.2, we had Rbi ∈ R≥0 and, thus, let Xi be determined

by (5)-(7) given X0
i = Si ≡ R≥0 for each i. In turn, we can use (8) and (9) to narrow down the

relevant states of the world as follows,

1. BFK-rationality: Assuming x satisfies R0AR, (8) dictates h1
i ∈ N+(S−i) for each i. That is,

player i’s first-order beliefs h1
i must assign a positive probability to each s−i ∈ Rn−1

≥0 at some

lexicographic level. In turn, (8) also dictates that si ∈ S1
i ≡ {0} ∪ [R0

b , R
1
b) for each i, namely

because there exists no permissible LPS for which any act in Si \S1
i maximizes lexicographic

expected utility (LEU).77

2. BFK-rationality and first-order assumption thereof: Assuming x satisfies R1AR, each player
BFK-assumes others to be BFK-rational. That is, any state satisfying projX1

−i
x ∈ BFK1

−i
is perceived as infinitely more likely than any state outside this set. In effect, (9) implies
that player i’s first-order beliefs h1

i must feature s−i ∈ S1
−i at a lower lexicographic level than

s−i ∈ S−i. In turn, (8) dictates that si ∈ S2
i ≡ [R0

b , R
1
b) for each i, namely because there

exists no permissible LPS for which any act in Si \ S2
i maximizes LEU.

3. BFK-rationality and second-order assumption thereof: Assuming x satisfies R2AR, each player

76Given a LPS σ = (φ0, φ1, ..., φk), we define margXσ ≡ (margXφ
0,margXφ

1, ...,margXφ
k).

77Recall that Rbi = 0 was used to represent the option to not submit a bid.
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BFK-assumes others to BFK-assume that others are BFK-rational. That is, any state sat-
isfying projX2

−i
x ∈ BFK2

−i is perceived as infinitely more likely than any state outside this

set. In effect, (9) implies that player i’s first-order beliefs h1
i must feature s−i ∈ S2

−i at a
lower lexicographic level than s−i ∈ S1

−i. Finally, (8) dictates that si ∈ S3
i ≡ {R0

b} for each i,
namely because there exists no permissible LPS for which any act in Si \S3

i maximizes LEU.

Akerlof ’s market for a used car

In our Akerlof application in Section 3.3, the seller was tasked to choose any continuous, non-

decreasing function po : [0, 1] 7→ [0, 1], whereas the buyer was tasked to choose any non-increasing

function z : [0, 1] 7→ {0, 1}. In the following, let Ss be the set of all continuous, non-decreasing

functions from [0, 1] to [0, 1] and Sb the set of all non-increasing functions from [0, 1] to {0, 1}

respectively. We thus let Xi be determined by (5)-(7) given X0
i = Si for both i ∈ {s, b} and, in

turn, use (8) and (9) to narrow down the relevant states of the world as follows,

1. BFK-rationality: Assuming x satisfies R0AR, (8) dictates h1
i ∈ N+(S−i) for both i ∈ {s, b}.

That is, both the seller and buyer’s first-order beliefs h1
i must assign a positive probability to

each s−i ∈ S−i at some lexicographic level.

(a) Seller : The seller assigns a positive probability to each z ∈ Sb and, thus, optimally
chooses po(θ) < θ/k, namely to avoid having to sell at such at too ‘low’ of a price in
case the buyer were to accept. In effect, (8) dictates that po ∈ S1

s , where S1
s is used to

denote the set of all continuous, non-decreasing functions from [0, 1] to [0, 1] that satisfy
f(θ) ≥ θ/k for each θ ∈ [0, 1], where k is taken as given.

(b) Buyer : The buyer assigns a positive probability to each po ∈ Ss and, thus, optimally
chooses to reject any offer in excess of one half, namely to avoid having to buy the car
at such a price in case the seller were to offer. In effect, (8) dictates that z ∈ S1

b , where
S1
b is used to denote the set of all non-increasing functions from [0, 1] to {0, 1} with
f(po) = 0 for any po > 1

2 .

2. BFK-rationality and first-order assumption thereof: Assuming x satisfies R1AR, both players
BFK-assume the other to be BFK-rational. That is, any state satisfying projX1

−i
x ∈ BFK1

−i
is perceived as infinitely more likely than any state outside this set. In effect, (9) implies that
both player’s first-order beliefs h1

i must feature s−i ∈ S1
−i at a lower lexicographic level than

s−i ∈ S−i.

(a) Seller : The seller perceives the event that the buyer rejects any offer in excess of one
half, i.e. z ∈ S1

b , as infinitely more likely than not and, thus, optimally chooses not
to make any such offer. That is, po ∈ S2

s , where S2
s is used to denote the set of all

continuous, non-decreasing functions from [0, 1] to [0, 1] that satisfy f(θ) ∈ [θ/k, 1
2 ] for

each θ ∈ [0, 1], where k is taken as given.

(b) Buyer : The buyer perceives the event that the seller chooses po ∈ S1
s as infinitely more

likely than not and, thus, as long as k ∈ [1, 2), optimally chooses not to accept any
positive price offers, namely because E[θ − po|θ ≤ kpo] < 0 for any po > 0. That is,
z ∈ S2

b , where S2
b is used to denote the singleton consisting of the function f(po) = 0 for

any po ∈ (0, 1].
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C Arrow and Debreu

Consider a set of n firms, each of which has a closed and convex set of production plans Yj ⊂ Rl,

where l is the number of goods in the economy and yjh < 0 is used to designate the hth good as

an input. In turn, Y =
∑n

j=1 Yj denotes the set of all possible production plans in the corporate

sector. Assuming that firms maximize profits, we have,

y?j ≡ argmax
yj∈Yj

pyj (10)

where p is taken as given by each j. In addition, consider m households, each of which has a

continuous, concave, and locally non-satiable utility function ui : Xi 7→ R defined on a closed and

convex set of consumption bundles Xi ⊂ Rl. Further suppose that each household is endowed with

a vector of goods ζi ∈ Rl (such that there exists xi ∈ Xi with xi < ζi) and a vector of firm shares αi

(such that
∑m

i=1 αij = 1 for each j). Finally, assuming that households maximize utility, we have,

x?i ≡ arg max
xi∈Xi

u(xi) s.t. pxi ≤ pζi +
n∑
j=1

αijpyj (11)

where p is, once again, taken as given by each i.
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Bertrand, Joseph. 1883. “Review of ‘Théorie mathématique de la richesse sociale’ and ‘Recherches
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